STERICALLY CROWDED HETEROCYCLES. XI. A SEMIEMPIRICAL PREDICTION OF ENANTIOMERIZATION BARRIERS FOR SUBSTITUTED (Z)-3-(IMIDAZO[1,2-a]PYRIDIN-3-YL)-1-PHENYLPROP-2-EN-1-ONES

Stanislav Böнm ${ }^{1, *}$, Radek PoHL ${ }^{2}$ and Josef Kuthan ${ }^{3}$
Department of Organic Chemistry, Prague Institute of Chemical Technology, 16628 Prague 6, Czech Republic; e-mail: ${ }^{1}$ stanislav.bohm@vscht.cz, ${ }^{2}$ radek.pohl@vscht.cz,
${ }^{3}$ josef.kuthan@vscht.cz

Conformational behaviour and racemization paths of the parent skeleton are discussed using a threedimensional Φ, Ψ-energy map calculated by the semiempirical PM3 method. To restrain the number of possible racemization paths, a less sophisticated approach based on the PM 3 heat of formation - torsion angle Φ relationships has been used for 5 -substituted title molecules; the role of non-planar enantiomeric transition states is postulated. Plausibility of the simple theoretical procedure has been tested using two phenyl derivatives of the title compounds for which experimental barriers to racemization are accessible.
Key words: Imidazo[1,2-a]pyridines; Axial chirality; Transition states; PM3 method; Rotation barriers; Hindered rotation; Atropisomerism; Semiempirical calculations.

The extended Decker oxidation ${ }^{1}$ of appropriate quaternary 1,4-disubstituted 2,6-diarylpyridinium salts has been shown ${ }^{2}$ to be a simple stereospecific approach to various crowded α, β-unsaturated ketones of (Z)-configuration with respect to corresponding imidazo[1,2-a]heteroarene moieties. Compounds $\mathbf{1}$ and $\mathbf{2}$ are typical examples of the products; investigations of the parent derivative 1a using chiral NMR shift reagents ${ }^{2 b}$, X-diffraction analysis $s^{2 c}$ and semiempirical PM3 calculations ${ }^{2 c}$ really predict atropisomerism for $\mathbf{1}$ - and $\mathbf{2}$-like molecules due to a restricted rotation around the $3,3^{\prime}$-bond. Meanwhile, a newly devel oped ${ }^{3}$ chiral HPLC procedure using polarimetric detection has been also applied ${ }^{3 c}$ to indicate enantiomeric instability of the parent la and to determine the racemization Gibbs energies $\Delta \mathrm{G}^{\neq}$for alcoholic solutions of compounds $\mathbf{1 b}$ and $\mathbf{1 c}$. The experimental data stimulate us to consider reliability of theoretical barriers to racemization calculated by the semiempirical PM3 method ${ }^{4 a, 4 b}$ for a more
extended series of related axially chiral compounds $\mathbf{1 a - 1 g}$ and $\mathbf{2 a - 2 g}$. They were - except for $\mathbf{2 g}$ - synthesized ${ }^{5}$ but the corresponding experimental barriers are not available or hardly obtainable by the mentioned online method ${ }^{3}$ because of their too high values. The results of theoretical treatment are presented in this paper.

CALCULATIONS

Considering the size of the studied molecular systems la-2g, any ab initio method has been avoided for the present; instead, the standard semiempirical PM3 procedure ${ }^{4 \mathrm{a}}$ was therefore used for all calculations. Full molecular energy optimizations for fixed values of the angle Φ or for both fixed angles Φ and Ψ were stepwise calculated (every step after 10° change). Some of the PM3 calculated characteristics are given in Table I. Other molecular energy relationships can be also seen in the 3D diagram (Fig. 1) which was obtained from 1369 SCF energy values calculated for PM 3 models of the molecule $\mathbf{2 a}$ and by a cartographic procedure ${ }^{4 d}$. As a starting point in all calculations, one arbitrary molecular geometry optimized with respect to all degrees of freedom by the standard M M 2 procedure ${ }^{4 c}$ has been used for a given molecule.

RESULTS AND DISCUSSION

A theoretical prediction of energy barriers to racemization does not seem to be a trivial task for such sterically hindered molecules as $\mathbf{1 a - 1 g}$ and $\mathbf{2 a - 2 g}$. Hence, an approximate but practically useful approach based on the semiempirical PM 3 method ${ }^{4 a, 4 b}$ has been developed. This follows from the preceding work ${ }^{2 c}$ in which conformational behaviour of the molecule 1a has been investigated using a PM 3 calculated Φ, Ψ-energy map but obtaining at least four possible racemization barriers in the range from 13.5 to $23.5 \mathrm{kcal} / \mathrm{mol}$ given by rotation about the C3-C3' bond. A similar conform-
ational behaviour may be expected for other 1-like molecules. On the other hand, it seems desirable to investigate how side chain 3'-tert-butyl group in the 2-like molecules affects their conformational properties; therefore, the same PM 3 procedure has been applied to analogous derivative 2a. From Fig. 1 it can be concluded that the PM 3 conformational model of 2a resembles, to a considerable extent, that reported ${ }^{2 c}$ for the 3'-phenyl derivative 1a. The resulting 3D contour surface contains two very flat (S)- and (R)-areas involving numerous conformations of the enantiomeric (S)- and (R)-molecules. These areas are separated by energy "mountain" ridges with several saddles suggesting possible paths to racemization and indicating that the restricted rotation around the C3-C3' bond characterized by changes in the torsion

Table I
Calculated racemization barriers (in $\mathrm{kcal} / \mathrm{mol}$) and torsion angles (in ${ }^{\circ}, \pm{ }^{\circ}$). See text for definitions

R^{1}	$\Delta \mathrm{E}_{1}$	$\Delta \mathrm{E}_{2}$	$\delta \Delta \mathrm{H}_{\mathrm{f}}$	$\Phi_{\text {S }}$	$\Phi_{\mathrm{ATS}}{ }^{\mathrm{a}}$	$\Phi_{\text {ATS2 }}{ }^{\text {a }}$
$\mathbf{1 a - 1 9}$						
H	13.8	16.3	+2.5	80	10	180
Ph^{b}	27.1	17.7	+0.3	80	40	200
$M e^{c}$	28.4	22.9	-1.9	90	40	190
Et	31.0	26.5	-1.1	90	40	190
Bu	30.6	26.4	-0.1	80	40	200
i-Pr	30.0	26.2	-1.0	100	40	200
t-Bu	25.4	29.7	-1.5	70	50	200
$2 a-2 g$						
H	30.0	31.9	+1.7	100	10	190
Ph^{b}	47.4	42.2	+0.8	100	30	220
Me ${ }^{\text {c }}$	40.1	43.9	-1.1	80	30	200
Et	38.8	42.9	-2.1	80	40	200
Bu	55.5	45.7	-0.7	110	40	230
i-Pr	43.7	42.7	-1.7	80	45	200
t-Bu	43.6	42.3	-1.6	110	30	230

[^0]angle Φ is really responsible for the axial chirality of the parent $\mathbf{2 a}$ and, consequently, also for related molecules $\mathbf{2 b} \mathbf{- 2 g}$. To simplify estimation of the racemization barriers, the following procedure has been used: In the first step, a molecular conformation for an angle Φ inside the (S)-area - estimated by preliminary MM2 calculations - was PM 3-optimized with respect to all degrees of freedom and thus the calculated molecular geometry and an appropriate heat of formation $\Delta \mathrm{H}_{\mathrm{f}}($ start $)$ were the starting points from which the other $\Delta \mathrm{H}_{\mathrm{f}}$ values were obtained by stepwise changes of the Φ-angles from 0 to 360°. In every step, optimization with respect to all geometry degrees of freedom, except for the fixed torsion angle Φ, was performed. Typical $\Delta H_{f}=f(\Phi)$ curves obtained for the isomeric PM 3 models of $\mathbf{1 g}$ and $\mathbf{2 b}$ are shown in Fig. 2. Similarly, to those for all remaining PM 3 models of

Fig. 1
3D molecular Φ, Ψ-energy diagram for the molecule 2a based on the PM3 heats of formation and calculated for the direction 0 to 360°

Fig. 2
Dependences of the PM3-calculated heats of formation $\Delta \mathrm{H}_{\mathrm{f}}$ for the isomeric derivatives $\mathbf{1 g}$ $(-)$ and $\mathbf{2 b}$ (----) on the torsion angles Φ

1a-1f, 2a and $\mathbf{2 c - 2 g}$, they exhibit two minima, $\Delta H_{f}(S)$ and $\Delta H_{f}(R)$ and two different energy maxima, $\Delta \mathrm{H}_{\mathrm{f}}(\mathrm{ATS1})$ and $\Delta \mathrm{H}_{\mathrm{f}}(\mathrm{ATS} 2)$ assigned to two approximate conformational transition states ATS1 and ATS2 corresponding to two racemization paths shown in Scheme 1. The enantiomeric relationship between the both minima has been tested by visualization of the corre-

Scheme 1
sponding molecular geometries as exemplified for $\mathbf{2 b}$ in Fig. 3. It is obvious that the two minima really correspond to entirely mirror (S)- and (R)-conformations. Because their calculated molecular geometries are slightly different, the inaccuracy in their heats of formations $\Delta H_{f}(R)$ and $\Delta H_{f}(S)$ may be

(R)

(S)

Fig. 3
PM3-Calculated molecular structures (hydrogen atoms are omitted) of the enantiomer (R)-2b corresponding to the first minimum (left) and of the enantiomer (S)-2b corresponding to the second minimum (right) on the $\Delta H_{f}=f(\Phi)$ curve (----) shown in Fig. 2
expected within the values $\delta \Delta H_{f}=\Delta H_{f}(R)-\Delta H_{f}(S)$. As follows from Table I, the latter values do not usually exceed the range of ca $\pm 2.5 \mathrm{kcal} / \mathrm{mol}$.

To overcome the problem of the somewhat different energy barriers, we have decided to represent their "improved" energy values by the arithmetic averages $\Delta \mathrm{E}_{1}=\Delta \mathrm{H}_{\mathrm{f}}($ ATS1 $)-\left[\Delta \mathrm{H}_{\mathrm{f}}(\mathrm{R})+\Delta \mathrm{H}_{\mathrm{f}}(\mathrm{S})\right] / 2$ and $\Delta \mathrm{E}_{2}=\Delta \mathrm{H}_{\mathrm{f}}($ ATS2 $)-$ $\left[\Delta H_{f}(\mathrm{R})+\Delta \mathrm{H}_{\mathrm{f}}(\mathrm{S})\right] / 2$. The corrected data are also given in Table I.

Thus, using the approximate approach, the occurrence of both ATS1 and ATS2 makes it possible to describe the racemization process just by two easily calculated barriers to rotation and two pathways shown in Scheme 1.

A real existence of the both TS's was proved by vibrational analysis showing only one imaginary frequency in every case. Comparable participations of all degrees of freedom in the geometry changes follows from the transition vector analysis. This fact is also reflected, to a certain degree, in the later discussed "saw tooth" fashion of the studied $\Delta \mathrm{H}_{\mathrm{f}}=\mathrm{f}(\Phi)$ curves due to a large cumulation of intramolecular steric strain, within a relatively broad region of the angles Φ, followed by a sudden molecular relaxation when the absolute configuration is changed. This is even more remarkable if smaller steps for the Φ changes are applied in the relaxation region.

We have, however, found that the shapes of the energy barriers as well as the $\Phi_{\text {ATS1 }}$ and $\Phi_{\text {ATS2 }}$ angles depend upon the direction of rotation forwards $\left(\Phi: 0 \rightarrow 360^{\circ}\right.$) or backwards ($\Phi: 360 \rightarrow 0^{\circ}$). All the investigated $\Delta H_{f}=f(\Phi)$ curves for $\mathbf{1 a - 1 g}$ and $\mathbf{2 a - 2 g}$ exhibit a typical "saw tooth" effect consisting in a progressive energy increase up to the maximum and a sharp drop to the next minimum as illustrated for the derivative $\mathbf{2 b}$ in Fig. 4. In addition, the slope of the barriers is invariably lower from the direction of changing the angle Φ. The feature has been also observed ${ }^{6,7}$ in some other AM 1 and

Fig. 4
Demonstration of the "saw tooth" effect on the $\Delta \mathrm{H}_{\mathrm{f}}=\mathrm{f}(\Phi)$ curves obtained by the directions of rotation $0 \rightarrow 360^{\circ}(-)$ and $360 \rightarrow 0^{\circ}$ (----) for the molecule $\mathbf{2 b}$

PM 3 calculations on larger inherently hindered molecules and attributed to relaxation given by distortion of the pyrazine ring ${ }^{6}$ in the molecule 4 or the fused (hetero)aromatic systems ${ }^{7}$ in the molecule 5. In fact, a pyramidal - coplanar configuration change at the $N(4)$ nitrogen centre can be also seen in the PM 3 conformations of the molecules $\mathbf{1}$ and $\mathbf{2}$ after the sharp energy drops.

3

4

5

It may be noted that a similar two-barrier system has been assumed ${ }^{8}$ purely speculatively for the interconversion between 3-type rotamers where, however, only the pathway via a lower-energy TS has been considered. Similarly, only one lower-energy AM1-calculated barrier for the enantiomerization of the sterically hindered 6-arylpyrazinone derivative 4 has been considered recently ${ }^{6}$. As it follows from Table I, in the case of the 5'-unsubstituted compound 2a, the PM 3-calculated barriers to rotation are comparable and therefore both have to be taken into account. In fact, it is evidently the case for most of the other molecules investigated in this paper.

The calculated Φ-values for the energy extremes for the rotation in the direction 0 to 360° (Table I) and the molecular shapes given in Figs 3 and 5

(R)

(S)

Fig. 5
PM 3-Calculated structures of the rotation transition states ATS2 calculated for the molecular system 2b (Fig. 2) in the directions $0 \rightarrow 360^{\circ}$ (left) and $360 \rightarrow 0^{\circ}$ (right)
show that neither in the (S)- and (R)-conformers nor in the ATS1 and ATS2 states, the side chain $-\mathrm{C}=\mathrm{C}-\mathrm{COPh}$ is coplanar with the imidazo[1,2-a]pyridine ring system due to the sterically crowded nature of all conformations of the molecules. In addition, the $\Delta H_{f}=f(\Phi)$ curves do not reach their maxima at the angles $\Phi=0,180$ and 360° for which the diene fragment $C(2)=C(3)-C\left(3^{\prime}\right)=C\left(2^{\prime}\right)$ is planar. Hence, the atropisomeric 1- and 2-like molecules change their absolute configurations even before they overcome the corresponding energy barrier. This may be understandable since the sterically crowded arrangement within the molecular moieties hinders them to adopt totally planar TS conformations. Whereas the $\Delta H_{f}($ ATS1 $)$ and $\Delta H_{f}($ ATS2 $)$ values are independent of the direction of rotation, this is unfortunately not the case of the corresponding angles $\Phi_{\text {ATS1 }}$ and $\Phi_{\text {ATS2 }}$ leading to enantiomeric ATS1 and ATS2 as illustrated for one of them in Fig. 5.

Owing to the above demonstrated existence of both ATS1 and ATS2 based on their full geometry optimizations starting from a given $\Delta H_{f}=f(\Phi)$ curve and completed by vibration analysis, it may be concluded that the observed direction effects on the curves is probably not the computational artifact known as chemical hysteresis. A detailed study of multidimensional hypersurface is out of scope of this study and may be also hardly feasible by the PM3 semiempirical method. This question remains to be open for a future study using MD and more sophisticated MO methods.
As follows from Table I , both the predicted rotation barriers, $\Delta \mathrm{E}_{1}$ and $\Delta \mathrm{E}_{2}$, differ no more than $4 \mathrm{kcal} / \mathrm{mol}$ for most of the studied examples except for the cases $\mathbf{1 b}\left(R^{1}=P h\right), \mathbf{1 g}\left(R^{1}=t-B u\right), \mathbf{2 b}\left(R^{1}=P h\right)$ and $\mathbf{2 e}\left(R^{1}=B u\right)$ where one of the paths is apparently preferred and the racemizations might proceed almost exclusively via the lower ATS. On the other hand, a comparison of experimental $\Delta \mathrm{G}^{\neq}$data, 24.4 and $26.1 \mathrm{kcal} / \mathrm{mol}$, obtained ${ }^{3 \mathrm{c}}$ for alcoholic solutions of methyl and phenyl derivatives $\mathbf{1 b}$ and $\mathbf{1 c}$ with the corresponding $\Delta \mathrm{E}_{1,2}$ values $17.7,27.1$ and $22.9,28.4 \mathrm{kcal} / \mathrm{mol}$ (Table I) suggests that the racemizations probably proceed via both the pathways at least in solution provided sol vent effects are small. In fact, it is probably the case for most axially chiral substances since non-negligible effects of solvation have been rarely observed ${ }^{9}$. In addition, the calculated lower $\Delta \mathrm{E}_{1,2}$ energies, 16.3 and $13.8 \mathrm{kcal} / \mathrm{mol}$, for the parent compound $\mathbf{l a}$ are in agreement with the observed ${ }^{3 c}$ lower enantiomeric stability of the substance in solution.

The data in Table I also demonstrate a more retarding steric effect of the 3^{\prime}-tert-butyl group in the molecules $\mathbf{2 b - 2 g}\left(\Delta \mathrm{E}_{1,2}=38.8-55.5 \mathrm{kcal} / \mathrm{mol}\right)$ compared with that of the 3^{\prime}-phenyl substituent in the molecules $\mathbf{1 b} \mathbf{- 1 g}$
$\left(\Delta \mathrm{E}_{1,2}=17.7-31.2 \mathrm{kcal} / \mathrm{mol}\right)$. Hence, it may be predicted that the former compounds hardly racemize at usually accessible temperatures in agreement with our aquired experience.

CONCLUSION

Apart from a limited accuracy of the presented semiempirical data, the atropisomerism of imidazo[1,2-a]pyridine derivatives $\mathbf{1 a - 1 g}$ and $\mathbf{2 a - 2 g}$ can be characterized in depth by the PM3-calculated energy rotation barriers $\Delta \mathrm{E}_{1,2}$. It may be expected that related molecules possessing Z-configuration at the C3-C3' bond will exhibit a similar stereochemical behaviour especially for the bulky 3 -substituents.

The authors would like to express their thanks to Prof. A. Mannschreck, Institute of Organic Chemistry, University of Regensburg, Germany for valuable discussion and some original experimental data. This work was sponsored by the Grant Agency of the Czech Republic (grant No. 203/96/0497).

REFERENCES

1. Kuthan J.: Heterocycles 1994, 37, 1347.
2. a) Böhm S., Kubík R., Novotný J., Ondráček J., Kratochvíl B., Kuthan J.: Collect. Czech. Chem. Commun. 1991, 56, 2326; b) Kubík R., Němeček J., Böhm S., Hradilek M., Kuthan J.: Mendeleev Commun. 1995, 29; c) Böhm S., Kubík R., Hradilek M., Němeček J., Hušák M., Kratochvíl B., Kuthan J.: Collect. Czech. Chem. Commun. 1995, 60, 115.
3. a) Mannschreck A.: Chirality 1992, 4, 163; b) Mannschreck A., Schinabeck M., Brandl F.: Chem. Listy 1998, 92, 261; c) Mannschreck A., Pustet N.: Unpublished results.
4. a) Stewart J. J. P.: J. Comput. Chem. 1989, 10, 209; b) Stewart J. J. P.: J. Comput. Chem. 1989, 10, 221; c) Program CS Chem 3D Pro Version 3.5.1. Cambridge Soft Corporation, Cambridge (MA) 1996; d) Program Surfer Version 5.00. Golden Software, Golden (CO) 1994.
5. a) Kubík R., Böhm S., Havlíček V., Strnad T., Kratochvíl B., Kuthan J.: Collect. Czech. Chem. Commun. 1996, 61, 1473; b) Pohl R., Böhm S., Kuthan J.: Collect. Czech. Chem. Соттии. 1999, 64, 1274.
6. Tulinsky J., Cheney B. V., Mizsak S. A., Watt W., Han F., Dolak L. A., Judge T., Gammill R. B.: J. Org. Chem. 1999, 64, 93.
7. Böhm S., Strnad T., Ruppertová I., Kuthan J.: Collect. Czech. Chem. Commun. 1997, 62, 1599.
8. Saito K., Yamamoto M., Yamada K.: Tetrahedron 1993, 49, 4549.
9. Cox C., Lectka T.: J. Org. Chem. 1998, 63, 2426.

[^0]: ${ }^{\text {a }}$ For a Φ-change in the direction from 0 to 360°. ${ }^{\text {b }}$ Experimental data ($\mathrm{MeOH}, 40{ }^{\circ} \mathrm{C}$, ref. ${ }^{3 \mathrm{c}}$): $\Delta \mathrm{G}^{\neq}=24.4 \mathrm{kcal} / \mathrm{mol}, \mathrm{t}_{0.5}=101 \mathrm{~min} .{ }^{\mathrm{c}}$ Experimental data $\left(\mathrm{EtOH}, 60{ }^{\circ} \mathrm{C}\right.$, ref. ${ }^{3 \mathrm{C}}$): $\Delta \mathrm{G}^{\neq}=26.1$ $\mathrm{kcal} / \mathrm{mol}, \mathrm{t}_{0.5}=118 \mathrm{~min}$.

